Deep-Learning the Landscape

Yang-Hui He proposes a paradigm to deep-learn the ever-expanding databases which have emerged in mathematical physics and particle phenomenology, as diverse as the statistics of string vacua or combinatorial and algebraic geometry. As concrete examples, he establishes multi-layer neural networks as both classifiers and predictors and train them with a host of available data ranging from Calabi-Yau manifolds and vector bundles, to quiver representations for gauge theories. He finds that even a relatively simple neural network can learn many significant quantities to astounding accuracy in a matter of minutes and can also predict hithertofore unencountered results. This paradigm should prove a valuable tool in various investigations in landscapes in physics as well as pure mathematics.


[amazon_link asins=’B00C8UQZAO,0786684887,0521322650,0898714788′ template=’ProductCarousel’ store=’faculti-21′ marketplace=’UK’ link_id=’d4667340-d477-11e7-9c60-b3350403e186′]


Report Infringement

Leave a Reply

Your email address will not be published. Required fields are marked *

Previous Article

Research Methods for Business Students

Next Article

The Films of John Cassavetes

As a Guest, you have insight(s) remaining for this month. Create a free account to view 300 more annually.
Related Posts

Add the Faculti Web App to your Mobile or Desktop homescreen